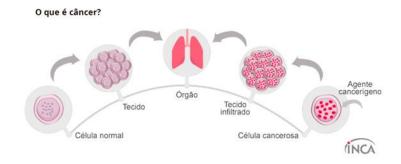
NANOTECNOLOGIA APLICADA AO TRATAMENTO DO CÂNCER

Victória Muraro da Silva⁽¹⁾, Ingrid Fernandes Costa⁽¹⁾, Renata Cristina Dias de Barros⁽²⁾, Clayton Gonçalves de Almeida⁽³⁾, Márcia Feldreman Nunes Gonzaga⁽⁴⁾,

Resumo

A Medicina Teranóstica é o uso de nanotecnologia para tratamento e diagnóstico de doenças, como o uso de nanopartículas magnéticas biocompatíveis para o diagnóstico e tratamento de câncer. Muitos avanços tecnológicos têm ocorrido na área, possibilitando o desenvolvimento de novas técnicas como a ressonância magnética nuclear. Acredita-se que a eficiência do tratamento com nanopartículas magnéticas na abordagem da aplicação da nanotecnologia no tratamento do câncer. **Método:** Realizado uma metodologia cientifica, selecionando instrumentos necessários para a elaboração de um trabalho científico. Utilizando um conjunto de técnicas e processos empregados para a pesquisa e a formulação de uma produção científica, levando-se em consideração as informações encontradas em bases de dados online, como o PubMed. Foram selecionadas fontes bibliográficas cuja publicação 2011 a 2019 e escritas em língua portuguesa ou inglesa. Discussão: As nanopartículas magnéticas possuem um grande potencial, apesar de apresentarem alguns pontos negativos, de modo geral possuem mais benefícios. Podemos salientar a importância das mesmas por sua aplicação na Medicina Teranóstica, permitindo a detecção rápida de células malignas de uma forma não invasiva para os pacientes, para fins de diagnóstico, podem ser utilizadas como biomarcadores de câncer, como contraste em exames de imagem para rastreamento do câncer, gerando imagens com resoluções espaciais melhores, exames mais precisos e com o benefício de não possuir efeitos colaterais como os contrastes tradicionais. Considerações finais: Pode-se concluir que, apesar dos avanços atuais da tecnologia farmacêutica aplicada à terapia do câncer e das suas vantagens, ainda é um tema no qual está sendo realizados testes, pois para o tratamento do câncer as nanopartículas devem atender alguns pré-requisitos, como demonstrar uma resposta prática ao campo magnético, exibir alta dispensabilidade e estabilidade em solventes orgânicos e formar ligações específicas com determinadas proteínas. Descritores: Câncer, Nanotecnologia, Medicina Diagnóstica, Nanopartículas.

- 1. Graduação em Farmácia na Universidade de Sorocaba SP
- 2. Acadêmica no curso de Farmácia na Universidade de Sorocaba -SP
- 3. Mestre em Ciências Farmacêuticas pela Universidade de Sorocaba SP
- 4. Mestra em Comunicação e Cultura pela Universidade de Sorocaba SP


Introdução

Câncer é o nome dado a um conjunto de mais de 100 doenças que têm em comum o crescimento desordenado de células, que invadem tecidos e órgãos. Contudo, caracterizado pela multiplicação de celular anormais dividindo-se rapidamente, estas células tendem a ser muito agressivas e incontroláveis, determinando a formação de tumores, que podem espalhar-se para outras regiões do corpo. Toda via este processo é denominado e conhecido como metástase, que por sua vez esta relacionado com a maior parte de mortes com câncer.

O tratamento em pacientes oncológicos se torna um desafio, visto que apesar dos avanços tecnológicos e pesquisas, a terapêutica ainda sim é quimioterapia, radioterapia, cirurgia, imunoterapia e medicamentos para alguns casos. Entretanto, pode haver falhas nessas medidas, uma vez que o câncer já tenha se espalhado pelo corpo todo, a resistência às drogas utilizadas e questões particulares do medicamento como sua farmacodinâmica, toxicidade e efeitos colaterais que, muitas vezes, diminuem a qualidade de vida do paciente.

A Medicina Teranóstica é o uso de nanotecnologia para tratamento e diagnóstico de doenças, como o uso de nanopartículas magnéticas biocompatíveis para o diagnóstico e tratamento de câncer. Muitos avanços tecnológicos têm ocorrido na área, possibilitando o desenvolvimento de novas técnicas como a ressonância magnética nuclear, a vetorização de medicamentos e a hipertermia magnética. Acredita-se que a eficiência do tratamento com nanopartículas magnéticas se deve a biocampatibilidade dos fluídos magnéticos e as células cancerígenas.

A proposta deste estudo é compreender e identificar a aplicação da nanotecnologia aplicada no tratamento do câncer.

Fonte: Instituto Nacional do Câncer

Objetivo

Esse estudo tem como finalidade identificar, a abordagem da aplicação da nanotecnologia no tratamento do câncer.

Identificar a aplicação da nanotecnologia no tratamento do câncer.

Metodologia

Realizado uma metodologia científica, selecionando instrumentos necessários para a elaboração de um trabalho científico. Utilizando um conjunto de técnicas e processos empregados para a pesquisa e a formulação de uma produção científica. Portanto, designando cinco artigos sobre o tema nanotecnologia no tratamento do câncer, levando-se em consideração as informações encontradas em bases de dados online, como o PubMed. Foram selecionadas fontes bibliográficas cuja publicação 2011 a 2019 e escritas em língua portuguesa ou inglesa.

Resultados

TITULO	AUTOR	ANO	TIPO DE	RESULTADOS
			ESTUDO	
Nanopartículas	VALLABA	2019	Revisão	Nos exames de imagem, nanopartículas
magnéticas:	NI, NVS;		bibliográfica	magnéticas (MNPS) estão sendo
tendências atuais e	SINGH, S;			usados como contraste para melhorar a
aspectos futuros em	KARAKOT			especificidade, sensibilidade e gerar
diagnóstico e	I, AS.			imagens de maior resolução espacial,
nanomedicina				gerando diagnósticos mais rápidos e
				precisos, pois sua característica
				magnética e capacidade de
				fluorescência o torna facilmente
				identificável em diversos exames de
				imagem e não apresenta efeitos
				colaterais dos agentes tradicionais
				como o iodo.
				Os MNPS tornam mais fácil a
				localização de células tumorais por se
				ligam aos biomarcadores de supérfice
				dessas células, portanto, após a ligação,
				ao ser identificada a nanopartícula,
				identifica-se também o tumor.
				Combinando-se anticorpos aos NPs, é
				possível a localização de peptídeos
				apoptóticos, genes silenciadores e
				agentes quimioterápicos nos locais do
				tumor

					O uso de NPs para administração de
					medicamentos antitumorais, mantém a
					concentração do medicamento no local
					durante o tratamento e minimiza os
					efeitos em células ou tecidos saudáveis
					adjacentes.
Implicações	de	HOSU, O;	2019	Revisão	As MNPs podem ser conjugados aos
nanopartículas		TERTIS, M;		bibliográfica	biomarcadores de câncer e sua
magnéticas	na	CRISTEA,			separação biológica é mais rápida que
detecção,		C.			os métodos tradicionais de separação
rastreamento	e				(centrifugação e filtração).
tratamento	do				Podem ser usados para administração
câncer					de medicamentos, pela conjugação do
					MNPs com os medicamentos anti-
					câncer, reconhecimento dos
					biomarcadores específicos das células
					tumorais, interação com os receptores
					dessas células e seleção seletiva e
					orientação para ligação com células
					tumorais especificamente.
					Outro sistema de administração de
					medicamentos é o direcionamento
					magnético, onde um campo magnético
					externo guia os MNPs (que apresentam
					forte propriedade magnética) até o
					local de ação, diminuindo a dosagem
					do medicamento e os efeitos colaterais

				apresentados por tratamentos
				sistêmicos convencionais, associados a
				captação inespecífica dos
				medicamentos citotóxicos.
				Outro método de tratamento é a
				hipertermia, tradicionalmente, ela
				aumenta a temperatura das células
				tumorais para 42 – 46°C,destruindo-as.
				Mas esse aumento da temperatura
				corporal pode levar a danos nas células
				saudáveis também. Para evitar esses
				danos, pode-se injetar MNPs
				diretamente no tumor e aplicar um
				campo magnético alternado de alta
				frequência, processo que causa
				aquecimento apenas do local e
				destruição térmica do tumor.
				MNPs também apresentam atividade
				fotodinâmica e podem ser usados como
				agentes fototérmicos para destruição de
				tumores, em associação ao laser "near-
				infrated" (NIR), pois aumentam a
				absorção do laser causando alto efeito
				citotóxico nas células.
As nanopartículas	OLIVEIRA,	2015	Revisão	Na ressonância magnética nuclear
de óxidos de ferro	L. G. S.;		bibliogáfica	(RMN), as NM são dispersas em
	GARG, V.;			líquido carreador orgânico ou

magnéticos na	SANTANA			inorgânico. Baseada no
terapia do câncer.	. G. P.			comportamento diferente dos prótons
				de diferentes tecidos, a RMN fornece
				imagens de estruturas anatômicas, bem
				destacadas pelo uso de agentes
				contrastantes. As NM, especialmente <
				10 nm, tornaram-se uma alternativa
				importante de agentes de contraste na
				RMN.
				Para ser aplicada ao tratamento de
				câncer as nanoparticulas devem atender
				os seguintes pré-requisitos: demonstrar
				uma resposta prática ao campo
				magnético aplicado por magnetos
				permanentes; Ser completamente
				esférica e de tamanho uniforme; Exibir
				alta dispersabilidade e estabilidade em
				solventes e formar ligações específicas
				com determinadas proteínas. Estes pré-
				requisitos possuem como objetivos
				evitar problemas de aglomeração das
				NM na corrente sanguínea, o que
				provocaria embolia e morte do
				paciente.
Aplicações da	COSTA, A.	2010	Revisão	O fato de as NPs apresentarem
nanotecnologia no	M.; SILVA,		bibliogáfica	tamanhos comparáveis aos de
diagnóstico e	V. V.			entidades biológicas, como células,

câncer. mesmo genes, as torna adequadas às aplicações biomédicas. Dentre essas aplicações bastante promissoras, pode-se destacar a utilização de NPs magnéticas biocompatíveis para o diagnóstico e tratamento de câncer em técnicas como o aumento do contraste em imagens de ressonância magnética (MRI), a separação celular, a vetorização de medicamentos e a hipertermia magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo, diretamente em um tecido ou célula.	tratamento do	vírus, moléculas, proteínas e até
Dentre essas aplicações bastante promissoras, pode-se destacar a utilização de NPs magnéticas biocompatíveis para o diagnóstico e tratamento de câncer em técnicas como o aumento do contraste em imagens de ressonância magnética (MRI), a separação celular, a vetorização de medicamentos e a hipertermia magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,	câncer.	mesmo genes, as torna adequadas às
promissoras, pode-se destacar a utilização de NPs magnéticas biocompatíveis para o diagnóstico e tratamento de câncer em técnicas como o aumento do contraste em imagens de ressonância magnética (MRI), a separação celular, a vetorização de medicamentos e a hipertermia magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		aplicações biomédicas.
utilização de NPs magnéticas biocompatíveis para o diagnóstico e tratamento de câncer em técnicas como o aumento do contraste em imagens de ressonância magnética (MRI), a separação celular, a vetorização de medicamentos e a hipertermia magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		Dentre essas aplicações bastante
biocompatíveis para o diagnóstico e tratamento de câncer em técnicas como o aumento do contraste em imagens de ressonância magnética (MRI), a separação celular, a vetorização de medicamentos e a hipertermia magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		promissoras, pode-se destacar a
tratamento de câncer em técnicas como o aumento do contraste em imagens de ressonância magnética (MRI), a separação celular, a vetorização de medicamentos e a hipertermia magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		utilização de NPs magnéticas
o aumento do contraste em imagens de ressonância magnética (MRI), a separação celular, a vetorização de medicamentos e a hipertermia magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		biocompatíveis para o diagnóstico e
ressonância magnética (MRI), a separação celular, a vetorização de medicamentos e a hipertermia magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		tratamento de câncer em técnicas como
separação celular, a vetorização de medicamentos e a hipertermia magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		o aumento do contraste em imagens de
medicamentos e a hipertermia magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		ressonância magnética (MRI), a
magnética. A nanotecnologia dedicada à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		separação celular, a vetorização de
à terapia oncológica permite a detecção rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		medicamentos e a hipertermia
rápida e sensível de células malignas em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		magnética. A nanotecnologia dedicada
em estágios iniciais e seu controle de forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		à terapia oncológica permite a detecção
forma não invasiva. A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		rápida e sensível de células malignas
A vetorização de medicamentos, conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		em estágios iniciais e seu controle de
conhecida na literatura científica por drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		forma não invasiva.
drug delivery ou drug targeting, é uma das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		A vetorização de medicamentos,
das técnicas nanomagnéticas utilizadas para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		conhecida na literatura científica por
para otimizar a liberação controlada de fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		drug delivery ou drug targeting, é uma
fármacos sítios-direcionados. Essa técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		das técnicas nanomagnéticas utilizadas
técnica permite a liberação de drogas ou medicamentos na dosagem correta e durante certo período de tempo,		para otimizar a liberação controlada de
ou medicamentos na dosagem correta e durante certo período de tempo,		fármacos sítios-direcionados. Essa
durante certo período de tempo,		técnica permite a liberação de drogas
		ou medicamentos na dosagem correta e
diretemente em um tecido ou cólulo		durante certo período de tempo,
diretamente em um tecido ou ceidia		diretamente em um tecido ou célula

"alvo". A liberação sítio-direcionada de fármacos vem sendo estudada na terapia oncológica por se tratar de uma técnica menos agressiva do que os métodos convencionais utilizados atualmente, como a quimioterapia e a radioterapia. Além disso, é possível controlar a dosagem e, dependendo do carreador (ferrofluido fluido magnético) utilizado, o tempo entre as de fármaco feitas liberações diretamente nas células cancerígenas, evitando a sobrecarga do organismo com doses massivas e a ação desses medicamentos em células ou tecidos sadios.

A hipertermia magnética ou magnetohipertermia é assim chamada quando nanopartículas magnéticas são empregadas no procedimento terapêutico. O método envolve a geração de calor por nanopartículas ferromagnéticas ou superparamagnéticas por meio da aplicação externa de um campo magnético de corrente alternada.

				Diante das aplicações clínicas
				apresentadas, os sistemas nanométricos
				devem apresentar baixa toxicidade e
				um momento magnético de saturação
				elevado, com a finalidade de minimizar
				as dosagens necessárias. Neste
				contexto, a magnetita (Fe3O4) se
				oferece como um candidato promissor
				para essas aplicações, visto que possui
				um baixo grau de toxicidade, permite
				sua funcionalização com diversos tipos
				de ligantes e apresenta as propriedades
				magnéticas requeridas para as técnicas
				expostas.
ESTRATÉGIAS	Alessandro	2017	Revisão	AuNP são geralmente nanoestruturas
NANOTECNOLÓ	Mariano		bibliográfica	bioinertes, embora seu tamanho similar
GICAS PARA	Costa;			ao das moléculas biológicas possa
DIAGNÓSTICO E	Viviane			favorecer a sua entrada indesejada na
TRATAMENTO	Viana Silva			célula prejudicando o funcionamento
DO CÂNCER				celular. A variação da citotoxicidade
				em função do tamanho de AuNP para
				diferentes tipos de células demonstrou
				que nanopartículas com tamanhos entre
				1 e 2 nm apresentaram alto índice de
				meia dose letal (IC50) resultando em
				uma drástica diminuição na população
				de macrófagos e regulação à expressão

de genes inflamatórios. Por outro lado, nanopartículas com tamanhos da ordem de 15 nm apresentaram valores de IC50 até sessenta vezes menores. A toxicidade também apresentou grande relação com a forma. Formas cúbicas são mais tóxicas que as formas esféricas. Adicionalmente, a toxicidade de AuNP pode ser também atribuída à presença do tensoativo catiônico geralmente usado durante o processo de sua síntese.

Nanopartículas de óxidos metálicos, que produzem um sinal de alto contraste em imagens de ressonância magnética (RM) tomografia ou computadorizada (TC), podem ser revestidas com anticorpos específicos receptores de membrana para encontrados em células cancerosas. Uma vez dentro do corpo, esse sistema se liga seletivamente às células cancerosas iluminando-as para o scanner. Da mesma forma, partículas de ouro podem ser usadas para melhorar a dispersão de luz para técnicas endoscópicas, como

	colonoscopia. Deste modo, estratégias
	nanotecnológicas podem tornar
	possível a visualização de marcadores
	moleculares que identificam estágios e
	tipos de câncer, permitindo que os
	médicos vejam moléculas e células não
	detectadas por técnicas de imagem
	convencionais.
	Misturas de nanopartículas com
	diferentes cores de perfluorcarbono
	também fornecem um sinal
	multiespectral que pode ser usado para
	distinguir as concentrações relativas do
	antígeno expresso pelas células
	tumorais dentro da região de interesse.

Discussão

As nanopartículas magnéticas possuem um grande potencial, apesar de apresentarem alguns pontos negativos, de modo geral possuem mais benefícios.

Podemos salientar a importância das mesmas por sua aplicação na Medicina Teranóstica, permitindo a detecção rápida de células malignas de uma forma não invasiva para os pacientes, para fins de diagnóstico, podem ser utilizadas como biomarcadores de câncer, como contraste em exames de imagem para rastreamento do câncer, gerando imagens com resoluções espaciais melhores, exames mais precisos e com o benefício de não possuir efeitos colaterais como os contrastes tradicionais. No caso de administração de medicamentos elas possuem interação com receptores das células e seleção seletiva promovendo especificidade com as células tumorais, minimizando os efeitos em células adjacentes, apesar de funcionar

muito bem, são pouco utilizadas, pois após realizar a sua função elas podem permanecer no organismo e apresentar toxicidade a longo prazo. Com o processo de hipertermia as nanopartículas magnéticas nos permitem através da alta temperatura desnaturar células cancerosas, sem atingir as células saudáveis adjacentes.

Considerações finais

Pode-se concluir que, apesar dos avanços atuais da tecnologia farmacêutica aplicada à terapia do câncer e das suas vantagens, ainda é um tema no qual está sendo realizados testes, pois para o tratamento do câncer as nanopartículas devem atender alguns pré-requisitos, como demonstrar uma resposta prática ao campo magnético, exibir alta dispensabilidade e estabilidade em solventes orgânicos e formar ligações específicas com determinadas proteínas. Estes pré-requisitos possuem como objetivos evitar problemas de aglomeração das MNPs na corrente sanguínea, o que provocaria embolia e morte do paciente e garantir sua eliminação, evitando efeitos tóxicos.

Referências

Costa, Am; Silva, Vv. 2017 – Estratégias Nanotecnológicas Para Diagnóstico E Tratamento Do Câncer.

Falleiros, JPB; Brandi, al; Fonseca, ARA. 2015 - Aplicações Da Nanotecnologia No Diagnóstico E Tratamento De Câncer.

Hosu, O; Tertis, M; Cristea, C. 2019 – Implication Of Magnetic Nanoparticles In Cancer Detection, Screening And Treatment.

Oliveira, Lgs; Garg, V; Santana, Gp. 2015 – **As Nanopartículas De Óxidos De Ferro Magnéticos Na Terapia Do Câncer.**

Vallabani, Nvs; Singh, S; Karakoti, As. 2019 — Magnetic Nanoparticles: Current Trens And Future Aspects In Diagnostics And Nanomedicine.